An autoradiographic study of the projections of the central nucleus of the monkey amygdala.

نویسندگان

  • J L Price
  • D G Amaral
چکیده

The efferent connections of the central nucleus of the monkey amygdala have been studied using the autoradiographic method for tracing axonal projections. Small injections of 3H-amino-acids which are largely confined to the central nucleus lead to the labeling of several brainstem nuclei as far caudally as the spinomedullary junction. Specifically, in the forebrain, the central nucleus projects heavily to the bed nucleus of the stria terminalis, the basal nucleus of Meynert, the nucleus of the horizontal limb of the diagonal band, and more lightly to the substantia innominata and the preoptic area. In the hypothalamus, label is found over the dorsomedial nucleus, the perifornical region, the lateral hypothalamus, the supramammillary area, and most heavily in the paramammillary nucleus. In the thalamus, all components of the nucleus centralis medialis and the nucleus reuniens receive fibers from the central nucleus and there is a light projection to the medial pulvinar nucleus. In the mesencephalon, there is heavy labeling dorsal to the substantia nigra ad over the peripeduncular nucleus and lighter labeling within the substantia nigra pars compacta and the ventral tegmental area; the midbrain central gray is also labeled. More caudally, fibers from the central nucleus travel in the lateral tegmental reticular fields and contribute collaterals to the raphe nuclei, the cuneiform nucleus, and the central gray substance. Perhaps one of the heaviest terminal zones is the parabrachial region of the pons, both the lateral and the medial nuclei of which receive a prominent central nucleus projection. Only the ventral aspect of the adjacent locus coeruleus appears to receive a substantial input, but there is labeling also over the area of the nucleus subcoeruleus. Finally, there is heavy labeling around the dorsal motor nucleus of the vagus and over the parvocellular component of the nucleus of the solitary tract. A number of intra-amygdaloid connections between the basal and lateral nuclei of the amygdala and the central nucleus are also described. The present findings, taken together with recently reported widespread projections from the temporal association cortex to the amygdala, point out a potentially trisynaptic route between neocortical association regions and a variety of brainstem nuclei, many of which are related to autonomic function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GABAB receptors within the central nucleus of amygdala may involve in the morphine-induced incentive tolerance in female rats

Objective(s): Central nucleus of amygdala (CeA) is the most important region for morphine-induced reward, and GABAergic system plays an important role on morphine reinforcement. The influence of CeA administration of GABAB receptor agonist and antagonist on the expression and acquisition of morphine-induced incentive tolerance using conditioned place preference (CPP) paradigm was investigated i...

متن کامل

Intervention of the Gamma-Aminobutyric Acid Type B Receptors of the Amygdala Central Nucleus on the Sensitivity of the Morphine-Induced Conditionally Preferred Location in Wistar Female Rats

Background: The amygdala is one of the nerve centers involved in drug reward. It is suggested that the central nucleus of the amygdala (CeA) is involved in morphine dependency. The CeA gamma-aminobutyric acid-ergic (GABAergic) system is a mediator of morphine rewarding effects. In this research, the effects of stimulation or inhibition of CeA GABA type B (GABAB) receptors on sensitization acqui...

متن کامل

Transient inactivation of the central amygdala modulates metabolic and hormonal responses to acute stress in female rats

Introduction: Current study examined the possible role of the central nucleus of amygdala (CeA) transient inactivation on the metabolic and hormonal disturbances induced by acute electro foot shock stress in female rats. Considering the differences between female and male in responses to stress, this study attempts to reveal possible mechanisms underlying these differences. Methods: Uni- or bil...

متن کامل

Microinjection of NMDA Receptor Agents into the Central Nucleus of the Amygdale Alters Water Intake in Rats

Objective(s) The central nucleus of the amygdala (CeA) is a forebrain structure which is important in regulation of ingestive behavior and there is direct and circumstantial evidence to indicate that some circuits involved with feeding behavior include glutamatergic elements. The present study examined whether administration of NMA (N-Methyl-DL-aspartic acid) or MK801 into the CeA altered wate...

متن کامل

Involvement of nitric oxide within the rat central nucleus of amygdala in morphine tolerance

The role of glutamate receptor within the nucleus accumbens in morphine tolerance has been postulated. Previous studies have reported that glutamate receptors exert their effects in part through the release of nitric oxide (NO). In the present study the effects of intra-accumbal injections of L-arginine (0.3, 1, and 3 ?g/rat), the NO precursor and L-NAME (0.3, 1, and 3 ?g/rat), the NOS inhibito...

متن کامل

Opioid Receptors of the Central Amygdala and Morphine-Induced Antinociception

The amygdala is a forebrain region, which is known as a modulator of pain sensation. The amygdala, particularly the central nucleus, has high concentrations of enkephalins relative to dynorphins and has high concentrations of opioid receptors. We here studied the role of central nuclei of amygdala in morphine antinociception. Methods: In this study, we used 130 male Wistar rats (200- 250g). Bil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 1 11  شماره 

صفحات  -

تاریخ انتشار 1981